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Abstract: In this paper we consider a certain class of analytic functions whose  coefficients are restricted  to 
certain conditions, and find  some interesting zero-free regions for them. Our results generalise a number of 

already known results in this direction. 
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I. INTRODUCTION AND STATEMENT OF RESULTS 
Regarding the zeros of analytic functions, Aziz and Shah [2]proved  the following results: 
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In this paper we are going to give generalizations of the above mentioned results. More precisely, we shall prove 

the following results: 
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Remark 1: Taking   0)1( ak  , Theorem 1 reduces to Theorem A. 

Taking  0 , we get the following result proved earlier by Aziz and  

Mohammad [1] : 

Corollary 1: : Let  0)(
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Theorem 2: Let  0)(
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Remark 2: If  njj ,....,1,0,0  , so that 02 M , Theorem 2 reduces to Theorem B by taking 

MM 1 . 

The following results are immediate consequences of Theorem 2: 

 

Corollary 2: : Let  0)(
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Corollary 3: : Let  0)(
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 Taking k=1in Cor.2, and noting that  11 taM  and 22 taM  ,we get the following result from Cor.2: 
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Taking k=1and njj ,....,1,0,0   ,in Cor.2, and noting that  11 taM  , Cor.3 reduces to Cor.1. 

 

II. PROOFS OF THEOREMS 

Proof of Theorem 1: Since 0)(
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Since f(z) is analytic for tz  , G(z) is analytic for tz  and G(0)=0, we apply Schwarz lemma to G(z) to get 
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It is easy to see that the region defined by 
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Hence it follows that F(z) and therefore f(z) does not vanish in the disk  
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That proves Theorem 1. 
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Proof of Theorem 2: Since the function 
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Clearly F(z) is analytic for 1z  and F(0)=0. Therefore applying Schwarz lemma to the function F(z), we get 
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Clearly 0 and for 1z ,  0)( zG if z . Hence it follows that G(z) and therefore f(z) does not 

vanish in Atz  , which is equivalent to the desired result. This completes the proof of Theorem 2. 
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